

12/05/2022

Final Report

Studio Buddy

Kennesaw State University

College of Computing and Software Engineering

Department of Computer Science

CS 4850 Senior Project

Alejandro Zicavo

Elmiche Kinmakon

Tubatsi Moloi

Links

Page | 1

Contents
Introduction 2

Background 2

Requirements 3

Technology Analysis 6

Development 8

Project Planning & Management 9

Design 10

Mockup 10

Architecture Error! Bookmark not defined.

Database 14

Results 16

Login Views 16

Shared Views 17

Professor Views 17

Student Views 18

Test Plan & Report 19

Conclusion 21

Appendix 22

User Guide 22

Quick links 22

Marketing 22

Page | 2

Introduction

Studio Buddy is a cross platform mobile application created using React Native that allows teachers and
students to connect for music lesson coaching sessions. Teachers will be able to post practice material
and assign the material to students. Professors will be able to track student progress and tailor students
practice exercises. This is not a replacement for existing teaching technologies but allows for more
seamless and directed instrumental practice.

Our team worked with Douglas Lindsey, a trumpet professor from the Bailey School of Music at KSU
who is the product owner to define requirements that allowed the team to construct the app to serve
his needs. We used the first month of this course to solicit, document and design a mockup of the
application using Figma. Once Professor Lindsey approved the design, we started to build the application
in React Native, JavaScript, and Firestore.

Background

Douglas Lindsey is a trumpet professor, from the Bailey School of Music at KSU. For his trumpet classes,

he was using an application called the GOLD method to coordinate his coaching lessons. The application

had a few limitations including being solely a desktop application and the professor having to login into

student’s accounts to assign them exercises. Professor Lindsey was in search of an application that gave

him more control and flexibility: a combination of the GOLD method and the workout applications,

CrossFit and True Coach. Because he was having difficulty finding such an application to fit his needs,

Professor Lindsey decided to seek out help to develop his own application. For our Senior Project the

team decided to work with Professor Lindsey to develop a mobile application that met his desired

requirements.

Page | 3

Requirements

Requirements were elicited from Professor Douglas Lindsey. We setup weekly calls where we would

document was required of the mobile app, digest it after the call and during the next meeting reiterate

what we understood. After a total of six weeks of gathering requirements, we were able to get approval

from the professor that the mobile app requirements were correct. Below you will find the summarized

requirements:

1. Login

 1.1 Login Page can register a new account using email and a password.

 1.1.1 New Account have one of two roles: Professor or Student.

 1.2 Login Page must authenticate an existing user.

 1.3 Login Page must have a forgot password feature.

2. Coaching

 2.0 Teacher landing page must allow creation of a new Studio Semester.

{Professor Perspective} -
Studio Semester

2.1 Studio Semesters must have a professor landing page.

 2.1.1 Studio Semesters have the following attributes: Registration Code
(must be unique), Creator (i.e.. Professor).

 2.1.2 Studio Semesters are immutable.

 2.1.3 Studio Semester contains all registered students and Creator of
studio semester (i.e. Professor) can view all students.

 2.1.4 Studio Semester allows Teacher to review student progress.

 2.1.5 Studio Semester allows the Teacher an ability to create routines and
update existing routines.

{Professor Perspective} -
Routines

2.2 Routines must have a professor landing page.

 2.2.1 Routines have the following attributes: Name, Length (time),
Frequency (per week), List of exercises.

 2.2.2 Routines fall under one of these categories: Etude or Fundamentals.

 2.2.3 Routines landing page must allow for creation of new routines and
updating existing routines.

Page | 4

{Professor Perspective} -
Exercises

2.3 Exercises must have a professor landing page.

 2.3.1 Exercises have the following attributes: Name, Description, Sample
Video [Optional], Starting Tempo, Goal Tempo, Weekly Repetition

 2.3.2 Exercises landing page must allow for creation of new exercise and
updating existing exercise.

{Student Perspective} -
Studio Semester

2.4 Studio Semesters must have a student landing page.

 2.4.1 This page must allow for registration into a new Studio Semester by
entering the code.

{Student Perspective} -
Routines

2.5 Routines must have a student landing page.

 2.5.1 Students will have read only access to Routines.

{Student Perspective} -
Exercises

2.6 Exercises must have a student landing page.

 2.6.1 Student must be able to interface with exercise.

 2.6.1.0 System must be able to keep track of exercise progress.

 2.6.1.1 Student must be able to mark exercises are complete.

3. Feature: Tempo
Algorithm

 FEATURE NOT CALCULATED.

4. Feature: Student Video
Recording

 4.1 Student must be able to create a video from an exercise page.

 4.1.1 Video can be up to 30 seconds in length.

 4.2 Professor must be able to access videos posted by students.

 4.2.1 Professor must be able to provide feedback on each video in the
form of a comment.

 4.2.2 Professor must receive a push notification once a student has
submitted a video.

5. Feature: Exercise
Video Sample

Page | 5

 5.1 Exercises must allow for an embedded YouTube link video as one of
the exercise optional attributes.

 5.2 Students must be able to play the YouTube link video in the app.

6. Feature: Chat
Messaging

 FEATURE NOT CALCULATED.

7. Feature: Live session
scheduling (Teacher and
Student)

 FEATURE NOT CALCULATED.

8. Feature: Calendar
(Students)

 FEATURE NOT CALCULATED.

Page | 6

Technology Analysis

During the requirements gathering phase, the team brainstormed technologies that could be used to
complete the application. Some key factors that the team needed to consider were that students and
the professor were using both Android and iOS mobile devices, we had limited time to develop the
application, and a mode of storage was needed for storing data the professor created.

Since we needed to create an application that could support Android and iOS mobile devices and we had
limited time, the team brainstormed cross platform technologies. A cross platform framework or sdk,
would allow the team to create one set of code that could be compatible on iOS and Android. The two
cross platform framework/sdk we decided to focus on were React Native and Flutter. React Native is a
framework based on the JavaScript library, React whereas Flutter is a sdk from Google that uses the Dart
programming language. No one from our team had experience with using React Native but one team
member had experience creating an application using Flutter. We all had some experience using
JavaScript with one of our team members having prior knowledge of React. Flutter would require the
team to learn Dart along with the Flutter UI which would require us to allocate more time for learning
and take time away from development. Whereas with learning React Native, it would require less time
for the team to learn since we all had familiarity with JavaScript. In addition, with Flutter it would be
beneficial if the application needed animations. From the requirements gathering, the team realized
that there is no need for animations. Through analyzing the two options, the team decided to go with
React Native.

Early on through speaking with Professor Lindsey, the team realized that we needed to implement login
capabilities for the students and professor as well as have a database to store data that is created by the
professor or anything uploaded by both types of users (student and teachers). Our first option was to
use SQLlite since it is a free, web based version of SQL and we all had some exposure through the
Introduction to Databases Systems course at KSU. SQLlite worked fine for the database implementation
but for the login implementation, the team faced difficulty with the functionality. As a result, we made
the switch to Firebase since it is known to have straightforward authentication implementation and
offers storage.

Through our research with Firebase,we saw that the Firestore database is an enhanced version of the
Firebase that suited the needs of the application. Through Firestore, we can manage user accounts
created as well as manage and store the data created by Professor Lindsey such as practice plans and
practice types. Firestore is a cloud based NoSQL database which offers the benefit of us not having to
worry about storing the data locally on our machines but access the data through the Internet and allow
easy transfer of ownership. The downside of using a NoSQL database is the lack of primary and foreign
keys and no tables which helps with keeping the data organized and makes it easier to understand the
relationships between the different tables. Even so, the documentation offered by Google was easy to
understand and React Native offered support for setting up the service which proved to make the
implementation relatively straightforward.

An important aspect of development was implementing a solution for version control. Using version
control allows the team to work on code locally then merge our changes together. We decided to use
GitHub to host our code. GitHub uses the version control, Git which we all had familiarity with and is
commonly used by software teams at many companies. Through using Git, we were able to fix merge
conflicts and revert to previous commits when necessary. Through GitHub, we created an organization

Page | 7

which allowed the entire team to have full access to the repositories and create two repositories: one
for the React Native application and the other for the website.

Page | 8

Development

We began our development efforts by learning JavaScript and subsequently learning how to use the

React Native framework. We then spent some time seeing how others wrote and organized their react

native projects (what folder hierarchy was used, how they named their files and how they decoupled

code).

We separated the project into three major parts: (1) Authentication, (2) Professor Functionality, and (3)

Student Functionality. This worked well for us since we are a team of three individuals. The three parts

were worked on in parallel. The authentication component was completed first. The professor

functionality second and the student functionality last.

The authentication part has two major challenges. The first challenge was to build out the pages (ie.

views) to match exactly the mockup in Figma. This included the graphical views as well as the backend

logic for mobile device button tapping actions and redirection. The second challenge was to connect the

backend of the authentication part to Firebase Authentication APIs. This included creating an account

with Firebase and enabling both Android and IOS support. Once Firebase was setup, we had to research

the APIs to interface our backend code with the Firebase Authentication service to allow central

management of user account(s).

The professor and student functionality were tightly knitted and required close collaboration – so we

will discuss this in one section. When starting development on this part, we had a mockup that told us

how the mobile app pages should look like, and we had built out models to describe the data. We had

decided to start our development using SQLite as a backend database which allowed us offline

development to speed up the project progress. We could not find an Object-Relational Mapping (ORM)

for React Native that could allow us to interface with SQLite database using objects. So, we took a

functional approach and wrote temporary functions that allowed interfacing with the SQL database. In

these functions, we included the raw SQL to create database, create tables, insert values, delete values,

and update values. Fast forward, once the frontend was completed, we needed to move the backend to

the cloud. We decided to use Firebase Firestore service to host our application backend database. This

service is uses NoSQL which presented a challenge for us. This is because when we used SQLite, we

deeply nested JavaScript asynchronous functionality to allow seamless integration when waiting on

database calls that were required prior to displaying data on the mobile app pages. But when we moved

to Firestore, we were seeing issues were functionality would sporadically fail. Later on, we found out

that Firestore has its own asynchronous APIs that we needed to use and so we had to unravel all our

JavaScript asynchronous behavior and migrate that to use the Firestore ‘.then()’ API. The also coupled

this with a loading indicator. This is because when we were using SQLite, database was local, and latency

was non-existent. But when we moved to the cloud, we had inconsistent latency where one call could

take a second like it could take five seconds. So, we accounted for this by adding a loading indicator to

any pages that required database API call.

Please see the Design section for a deep dive into our mobile apps design and architecture.

Page | 9

Project Planning & Management

In project planning and management, the team used multiple tools. As part of one of the deliverables
for this course included created a Project Plan in which the team needed to provide a Gantt chart. The
Gantt chart allowed the team, to properly allocate time each week to work on the project and to keep in
mind which milestones were coming up on the schedule. To manage file sharing, the team decided to
create a folder specific for this class that everyone has access to.

For meetings with Professor Lindsey and team meetings, we used Microsoft Teams since it is an
application offered by KSU. We made sure to have more meetings with Professor Lindsey in August and
September since that was the period that where we were gathering the requirements. In October and
November, the team had some meetings to give Professor Lindsey an update on where we were with
application development. Using email to communicate with Professor Lindsey also proof to be beneficial
in asking clarifying questions, giving updates, and scheduling meetings.

In October, the month in which the team started constructing the application using React Native, we
decided to have weekly check ins on Thursdays to discuss our progress for the week. In addition, the
team would meet after the Senior Project class to discuss any concerns.

For managing our code for the, the team used GitHub as mentioned previously in the Technology
Analysis. We worked primarily with one branch and push code directly. If any merge conflict arose when
pushing changes, the team would deal with them manually.

Figure 1: Team Gantt Chart

Page | 10

Design

Mockup

A mockup was built based off the elicited requirements. The design was done using a tool called Figma,

which is a free, web-based prototyping tool, popular with web and application designers. The mockup

design was iterative as we worked with Professor Lindsey in ensuring that the design matched both his

requirements and was visually what he had envisioned. The team broke down the design into three

parts: Login view, Teacher view, and Student view. The two types of users are a teacher (in this case

specifically Professor Lindsey) and his students. Because the teacher and his students have different

goals for using the app, for example the teacher would be creating and modifying content as well as

managing his students while the students will be viewing content the teacher created, the screens for

each type of user would differ. Both the professor and students would need to login into their created

accounts to see their specific content.

Figure 2: Figma Authentication Mockup

Page | 11

Figure 3: Figma Bottom Navigator Mockup

Figure 4: Figma Coaching Functionality (Professor) Mockup

Page | 12

Figure 5: Figma Coaching Functionality (Student) Mockup

Architecture

The Mobile app was organized into four major sections. These sections are depicted in the high-level

interactions diagram on Figure 6. At the core, a professor required the creation of Exercise(s). These

Exercise(s) were organized into Practice Plan(s). The Practice Plan(s) have a defined Practice Type. Lastly,

an Exercise can be Practiced. In general, a professor was given create, update, and delete functionality

while a student was given only read functionality. These sections are talked about in more depth on the

next section titled ‘Database’.

Page | 13

Figure 6: Diagram showing high-level interactions between a Professor and a Student.

Page | 14

Database

The database implementation was done in both SQL using SQLite and NoSQL using Firebase Firestore

API(s). Both implementations were done independently, and even though they are very comparable,

subsequent discussion will only focus on the NoSQL database since this is what ultimately made it to our

final product.

We used Firebase Authentication service to manage our users and ensure their integrity of their

credentials in a store safeguarded by Google Firebase. Consequently, we realized that professors did not

have access to information that was needed to review their students. This was because the

authentication service essentially segregated users from each other – this was a security feature. So,

what we did is we created a User Settings collection. This collection was responsible for holding a User

UID (which is unique and created by Firebase Auth) and storing the following attributes for a given user:

A. Display Name Mutable
B. Email Immutable
C. User UID Immutable

With these attributes, we were able to use a student and professors User UID in other collections and be

able to reference their email and display name.

Next, we needed to be able to maintain a list of Practice Types and per requirements, a professor

needed to be able to create, update and delete Practice Types. We created a collection that hosted

documents with the following attributes:

A. Name Mutable
B. Sub Type Mutable
C. User UID Immutable

The name attribute is that name of the Practice Type. The sub type attribute is to allow an additional tag

where needed. The User UID is the ID for the Professor who manages that Practice Type on the

collection. Essentially, to find the available practice types of a given professor, we would search all

practice types were User UID was equal to the professors UID.

Next, we needed to create Practice Plan collection that will later be used to organize exercises. We

created a collection that hosted documents with the following attributes:

A. Code Immutable
B. Duration (in days) Mutable
C. Name Mutable
D. Practice Type UID Mutable
E. User UID Immutable

The name attribute represents the name of the Practice Plan. The duration represents the length of the

practice plan in days. The Practice Type UID represents an existing practice type already tied to the

professor. The User UID is the professor who owns the Practice Plan. Lastly, the code is a globally unique

code that students use to register to a Practice Plan.

Page | 15

Next, we needed a collection to tie a student User UID to a Practice Plan UID. A collection was created

for this purpose with the following attributes:

A. Practice Plan UID Immutable
B. User UID Immutable

Intuitively, the Practice Plan UID points to the Practice Plan while the User UID points to a unique

student that is enrolled into the Practice Plan.

Next, we needed a collection to track exercises. We created a collection with the following attributes:

A. Name Mutable
B. Description Mutable
C. Video Link Mutable
D. Start Tempo Mutable
E. Goal Tempo Mutable
F. Tempo Progression Mutable
G. Practice Plan UID Immutable

The name attributes is the name of the Exercise while the description is used to provide more clarity to

students in terms of what is expected of them during this exercise. The video link is an optional value

where a professor can post a YouTube video with material, they would like a student to preview. Start

tempo, goal tempo and tempo profession are all exercise parameters. The first two define a tempo they

should follow. The Tempo profession is an algorithm that defines how a student should be doing from a

starting tempo to eventually reaching a goal tempo. Currently, only a Linear progression was defined

which increases starting tempo linearly until it reaches the goal tempo based on the duration of the

Practice Plan. Lastly, an exercise is tied to a Practice Plan and thus we need the UID.

Next, we need a way to tie a user to an exercise. This is a requirement that allows the professor granular

control to assign any exercise to student(s). A collection with the following attributes was created to

track the student enrollment into exercises:

A. Exercise UID Immutable
B. User UID Immutable
C. Start Date Immutable

Intuitively, the Exercise UID is tied to a student UID with an additional start date. The start date is based

on the requirement that a professor must be able to select a start date for a given exercise – that is a

date when the student should see the exercise so that they can Practice it.

Page | 16

Results

Some of the requirements that we originally planned to complete in Phase 1, we had to push to Phase
2.

Our application was created using React Native as originally planned. For the login, we were able to
create all the screens and implement the capability for KSU faculty and students to create an account
and sign in. To reset passwords, KSU blocks emails from Firebase and we were not able to come with an
alternative solution. The backend logic for the login is handled through Firestore.

For the Teacher view, the professor can create practice plans which students can enroll in and exercises
for those practice plans. The professor can update and delete practice plans and exercises. In addition,
the professor can create and update practice types. Additionally, the professor can see the students
who are enrolled in his classes. We used Firestore to store the practice plans and practice types that the
Professor creates.

For the Student view, the student can join a practice plan, view practice plans they are enrolled in, and
see the exercises assigned.

Below are the screenshots of the screens the team developed so far.

Login Views

Page | 17

Shared Views

Professor Views

Page | 18

Student Views

We created a website that gives an overview of the application as well as a place to view the

deliverables from the course and C-Day such as the poster, project plan, and demo. The website was

created using HTML and CSS.

Page | 19

Test Plan & Report

Testing was performed and results indicate Mobile app is ready for production. There was one failure

which was the Password Reset option. In our testing, it looks like KSU email filtering is blocking the reset

link sent by Firebase. There are other additional results marked as N/A, these indicate we could not test

this feature as it was not implemented.

Section Test Test Result

1. Login
1.1 Login Page can register a new account using email and a
password. PASS

1.1.1 New Account have one of two roles: Professor or
Student. PASS

 1.2 Login Page must authenticate an existing user. PASS

 1.3 Login Page must have a forgot password feature. FAIL

2. Coaching
2.0 Teacher landing page must allow creation of a new Studio
Semester. PASS

{Professor Perspective} -
Studio Semester 2.1 Studio Semesters must have a professor landing page. PASS

2.1.1 Studio Semesters have the following attributes:
Registration Code (must be unique), Creator (ie. Professor). PASS

 2.1.2 Studio Semesters are immutable. PASS

2.1.3 Studio Semester contains all registered students and
Creator of studio semester (ie Professor) can view all students. PASS

2.1.4 Studio Semester allows Teacher to review student
progress. PASS

2.1.5 Studio Semester allows the Teacher an ability to create
routines and update existing routines. PASS

{Professor Perspective} -
Routines 2.2 Routines must have a professor landing page. PASS

2.2.1 Routines have the following attributes: Name, Length
(time), Frequency (per week), List of exercises. PASS

2.2.2 Routines fall under one of these categories: Etude or
Fundamentals. PASS

2.2.3 Routines landing page must allow for creation of new
routines and updating existing routines. PASS

{Professor Perspective} -
Exercises 2.3 Exercises must have a professor landing page. PASS

2.3.1 Exercises have the following attributes: Name,
Description, Sample Video [Optional], Starting Tempo, Goal
Tempo, Weekly Repetition PASS

2.3.2 Exercises landing page must allow for creation of new
exercise and updating existing exercise. PASS

{Student Perspective} -
Studio Semester 2.4 Studio Semesters must have a student landing page. PASS

2.4.1 This page must allow for registration into a new Studio
Semester by entering the code. PASS

{Student Perspective} -
Routines 2.5 Routines must have a student landing page. PASS

 2.5.1 Students will have read only access to Routines. PASS

Page | 20

{Student Perspective} -
Exercises 2.6 Exercises must have a student landing page. PASS

 2.6.1 Student must be able to interface with exercise. PASS

2.6.1.0 System must be able to keep track of exercise
progress. N/A

 2.6.1.1 Student must be able to mark exercises are complete. PASS

3. Feature: Tempo Algorithm FEATURE NOT CALCULATED. N/A

4. Feature: Student Video
Recording

4.1 Student must be able to create a video from an exercise
page. N/A

 4.1.1 Video can be up to 30 seconds in length. N/A

4.2 Professor must be able to access videos posted by
students. N/A

4.2.1 Professor must be able to provide feedback on each
video in the form of a comment. N/A

4.2.2 Professor must receive a push notification once a student
has submitted a video. N/A

5. Feature: Exercise Video
Sample

5.1 Exercises must allow for an embedded YouTube link video
as one of the exercise optional attributes. PASS

5.2 Students must be able to play the YouTube link video in
the app. PASS

6. Feature: Chat Messaging FEATURE NOT CALCULATED. N/A

7. Feature: Live session
scheduling (Teacher and
Student) FEATURE NOT CALCULATED. N/A

8. Feature: Calendar
(Students) FEATURE NOT CALCULATED. N/A

Page | 21

Conclusion

As have closed out the last phase of this project, we have a few takeaways from this project. We have

gained an increased respect for Software Engineering and project management. It took our team around

six weeks to finish collecting requirements and finish the mockup (and approved by stakeholder). We

believe it took us this long because eliciting requirement sounded a lot easier than it was; the reality was

that we would go back and forth redefining what we understood was needed from the app multiple

times. Another takeaway was that managing a Software Development project was not effortless; it was

a constant back and forth between developing code, reviewing mockup and keeping stakeholder up to

date on where we are, where we are going next, and ensuring we were incorporating the stakeholder’s

feedback into the project.

Page | 22

Appendix

User Guide

https://drive.google.com/file/d/1X4dtjE9qsNf6HrEHDY4WCg63VrpxcELZ/view?usp=sharing

Quick links

Project Website https://sp12-studio-buddy-website.netlify.app

GitHub Project https://github.com/sp12-music-scheduling

Marketing

https://drive.google.com/file/d/1X4dtjE9qsNf6HrEHDY4WCg63VrpxcELZ/view?usp=sharing
https://sp12-studio-buddy-website.netlify.app/
https://github.com/sp12-music-scheduling

